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Porous rock on the earth’s surface often contains more than one fluid

phase, and an important case is partial saturation with air and water.

We implemented a pore-scale, percolation model coupled with a con-

tinuum model for water vapor diffusion in order to create a simulated

tomographic image of water distribution within a rock core during dry-

ing. As drying proceeds, the initial, continuous water cluster breaks

up into smaller and smaller clusters with an increasing surface-area-to-

volume ratio. Drying times are a function of the number and location

of boundary surfaces, but the surface-area-to-volume ratio is approxi-

mately the same for a given saturation. By applying a Voigt volume

average of the elastic properties of water-filled and air-filled cells, and

by introducing the ad hoc rule that water-filled pores on the air-water

interface of a cluster behave in a drained manner, we find elastic moduli

as a function of saturation that mimic laboratory experimental data.

INTRODUCTION

The earth’s crust near the surface consists of
porous rock containing various liquids and gases,
such as air, water, and hydrocarbons. When two or
more fluids are present simultaneously, it is of sig-
nificant practical interest to determine the amount
and distribution of the phases from geophysical
methods. Because probing the earth with elastic
wave velocities is done extensively in oil and gas
exploration and in environmental applications, in-
terpreting geophysical measurements requires solv-
ing the inverse problem and hence knowledge of
how elastic properties vary over a wide range of
frequencies in rocks containing two fluid phases.
An important case is partial saturation in which
one phase is air and the other is water. Numer-
ous models and measurements have been made for
this case [White, 1975; Dutta and Odé, 1979a, b;
Murphy, 1984; Berryman et al., 1988; Endres and

Knight, 1989; Goertz and Knight, 1988; Mavko

and Nolen-Hoeksema, 1994; Cadoret et al., 1995,
1988; Dvorkin and Nur, 1998; Mavko and Muk-

erji, 1998; Knight et al., 1998; Johnson, 2001;
Tserkovnyak and Johnson, 2002]. As discussed by
Berryman et al. [2002], a central issue in deal-
ing with the experimental results for partially sat-
urated rocks at higher frequencies (sonic and ul-
trasonic) is that they can deviate significantly from
what is predicted by the well-known Gassmann low-
frequency (seismic) fluid-substitution theory. One
explanation for deviations is that the saturation
is patchy, viz., some pores are filled entirely with
water, whereas others are filled entirely with air.
High-frequency stress variations induce differential
pore pressures, which do not relax. At very low
frequencies, water-filled regions have an adequate
opportunity to relax during half a stress cycle, and
consequently the overall behavior is the same as
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the drained case. Drained behavior is equivalent
to each pore containing the same mix of air and
water, which has essentially the compressibility of
air. Thus the very-low-frequency case is equiv-
alent to fluids being homogeneously mixed, and
the bulk and shear moduli can be predicted us-
ing the Gassmann formulation. Frequency of ap-
plied stress, the size distribution of the water clus-
ters, and the hydraulic diffusivity of the porous
medium are intertwined in the question “what is
patchiness,” in terms of elastic response. Berryman

and Pride [2002, 2004] examined torsional waves
in a partially saturated cylinder. Patchy satura-
tion during drying was represented by a two-layer
model in which the inner cylinder was completely
saturated and the outer annulus was completely
dry. Somewhat surprisingly, the patchy cylinder fits
shear velocity data for Massillon sandstone at 560
Hz better than the Gassmann prediction, in which
the only variation resulted from density changes.

Experimental, elastic modulus data at high fre-
quency in partially-saturated rock span the range
between homogeneous and patchy behavior [e.g.,
Murphy, 1984; Knight and Nolen-Hoeksema, 1990].
Because the water distribution is dependent upon
saturation history, every process that produces
changes in water saturation, e.g., evaporative dry-
ing, immiscible drainage, or imbibition, produces
distinctive distributions of water-cluster sizes as a
function of saturation. Although computed tomog-
raphy techniques exist to examine fluid distribu-
tions in rocks, such images and associated elastic
properties are not available. On the other hand,
simulated images can be made for evaporative dry-
ing, which is the process by which different satura-
tions are often achieved while elastic wave velocities
are measured. Evaporative drying occurs in a vari-
ety of earth-science contexts — from the behavior of
a nuclear waste repository in the unsaturated zone,
to laboratory studies for determining how elastic
wave velocities vary with water. In common with
other drainage processes which involve competition
among forces of gravity, capillarity, and pressure,
the pore-level detail of water distribution cannot
be obtained using continuum models based on av-
eraging over an REV. This paper presents results
for evaporative drying of laboratory-sized rectan-
gular parallelepipeds using a combined percolation
(water phase) and continuum (air phase) model
[Prat, 1993, 2002]. Several permutations of open
and closed boundary surfaces are employed. In ad-
dition, simulations are performed for different Bond

numbers (ratio of gravity to capillary forces). These
simulations are examined qualitatively and quanti-
tatively in terms of the nature of the drying front
and the distribution of water-cluster-size changes
as drying occurs. The results are then examined
for estimating elastic moduli.

DRYING MODEL

To quantify the saturation distribution during
drying, we implemented a computational model to
simulate the process at the pore scale. A com-
plete description of the modified invasion percola-
tion (MIP) and drying model is given by Strand

[2003]. As indicated in the introduction, the dry-
ing model builds upon Prat’s coupled percolation-
continuum approach, which properly captures the
two-phase flow and diffusion aspects of the prob-
lem. Drying involves the slow displacement of air
into a water-saturated porous meduim. The MIP
model includes capillary and buoyancy forces ex-
clusively because viscous forces are assumed negli-
gible. In the basic MIP model, the porous medium
is represented statistically on a three-dimensional
lattice. The lattice periodicity is determined by
the mean grain size 〈Rg〉. Two different distribu-
tion functions are used to represent the nonwetting
radii Rnw (throats) and wetting radii Rw (pores).
The nonwetting radius is the minimum radius of
curvature on the grain scale and provides the max-
imum local resistance to drainage, whereas the wet-
ting radius is the maximum radius of curvature and
provides the maximum local resistance to imbibi-
tion. The wetting radii are the pores, which are
the sites of the lattice; and the nonwetting radii
are the throats, which are the bonds of the lattice
emanating from the sites with coordination number
Zc representing the average number of connections
at sites. The terminology of wetting and nonwet-
ting fluid radius distributions is preferred over the
pore/throat terminology primarily to avoid the im-
plications of an assumed and regular geometry that
is often associated with pores/throats. By refer-
encing the two distinct length scale distributions
according to wetting and nonwetting fluids, it is
inferred that they must be measured by means of
displacement experiments. These length scales rep-
resent intrinsic properties of the pore space geom-
etry, but it must be noted that they are effective,
as opposed to actual, lengths. The implementa-
tion of percolation models for simulating immisci-
ble displacement involves the definition of a pore-
filling potential at each location on the interface
[Larson et al., 1981; Wilkinson, 1984; Meakin et
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al., 1992; Ioannidis and Chatzis, 1993; Chaouche

et al., 1994; Glass and Yarrington, 1996; Glass et

al., 1998, 2001; Xu et al., 1998]. The physics are
incorporated through a percolation parameter, Ψi,
which is a measure of the probability of invasion
at all interface sites i. The percolation parameter
incorporates the physical forces of buoyancy and
capillary pressures, Pb,i and Pc,i respectively, where

Pb,i = ∆ρghi = ∆ρg2〈Rg〉Hi (1)

and

Pc,i =
2γ

Rnw,i

(2)

where ∆ρ is the density contrast between the two
fluid phases (essentially ρw, water density when air
is the gas phase), hi is the height of site i relative to
a datum, Hi = hi/(2〈Rg〉) is a normalized height,
and γ is the interfacial tension. The mean capillary
pressure can be normalized

P̄c =
2γ

〈Rnw〉
, (3)

and the nonwetting Bond number can be defined as

Bonw =
∆ρg〈Rg〉〈Rnw〉

γ
. (4)

Note that the Bond number is a nondimensional
ratio of gravity to capillary forces. These two steps
lead to the definition of the percolation parameter,

Ψi = BonwHi −
〈Rnw〉

Rnw,i

. (5)

The MIP model proceeds by invading the loca-
tion on the interface that maximizes Equation 5
at each time step. Each invasion step involves the
penetration of the identified nonwetting fluid ra-
dius, where the meniscus enters a region of increas-
ing cross-sectional area. The resulting pressure im-
balance leads to rapid filling of the adjacent pore
(wetting fluid radius) and exposes a new set of non-
wetting fluid radii. The interface list is updated ac-
cordingly, and another time step is performed until
the termination criterion max(Ψi) ≤ 0 is met. Ex-
pressed differently, air invasion continues as long as
gravitational forces associated with the suspended
water column exceed the minimum local (thresh-
old) capillary force on the interface.

The drying model involves several modifications
of the MIP model:

1. Incorporating clustering of the water phase:

As air invades the porous medium, the de-
fending water phase is broken into numerous
disconnected clusters. This process is analo-
gous to the trapping of the defending phase.
However, because evaporation occurs at every
part of the air-water interface, the isolated
clusters must be allowed to continue to be in-
vaded by air. Because clusters remain eligible
for invasion in the drying model, identifying
them required adjusting the data structures
to improve efficiency. The simplest way to
identify a new isolated cluster is to do a con-
nectivity search by examining every water-
filled site in the lattice. This must be accom-
plished through a series of nearest neighbor
searches and has a time complexity O(L3) at
each invasion step. An improved method has
been implemented that has time complexity
O(constant), where the constant is on the or-
der of the maximum cluster size (which does
not scale with the system size but is depen-
dent on the buoyancy Bond number). This
method involves a parallel search of all water
sites adjacent to the most recently invaded
site.

2. Allowing independent percolation events at

each cluster: The percolation (air invasion)
events at each cluster are independent of the
other clusters (though coupled temporally via
the continuum model). Each cluster therefore
represents a separate list of possible invasion
locations. Once a cluster has been identified
as the next to host an invasion step, the ap-
propriate throat is chosen as described by the
MIP model from that cluster’s list of interface
throats. Invasion occurs as usual, and the in-
terface list is updated, generating additional
clusters if necessary.

3. Coordinating percolation events among clus-

ters by temporal sequencing: Once the clus-
ters have been identified and the percola-
tion events isolated among them, the drying
model must coordinate the invasion steps by
attributing an evaporation rate to each clus-
ter and independently tracking the progres-
sion of time. A percolation event occurs each
time a cluster loses a pore volume Vpore of wa-
ter. Upon formation, each cluster is assigned
a state variable, the incremental fluid volume,
Vinc, which is initially set equal to Vpore. The
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cluster evaporation rate and incremental vol-
ume yield a time to invasion for each cluster.
The cluster with the minimum invasion time
is the next to host a percolation event, time is
updated by the appropriate amount ∆t, the
incremental volume of each cluster is reduced
using ∆t and the respective evaporation rate,
and Vinc for the invaded cluster is reset to
Vpore. The incremental volume of each clus-
ter is updated based on the time to the per-
colation event and its evaporation rate. This
process is repeated for each invasion step.

4. Coupling between evaporation at each cluster

and water vapor diffusion in the air phase: At
each time step, the continuum model solves
for the steady-state water-mass fraction in the
air phase. This is accomplished using an it-
erative relaxation method that updates the
mass fraction using the total mass flow out of
each pore i:

Ṁwi =
∑

j

ṁwij (6)

where ṁwij is the mass flow rate between
pore i and pore j. The system is solved when
Ṁwi = 0 at all pores i. Computationally, this
corresponds to continuing to iterate as long as
the cumulative residual is greater than some
threshold ε, where the residual δcum is given
by

δcum =

√

∑

i

(Ṁwi)2 . (7)

Because the continuum model increases in
size by one pore at each time step, the thresh-
old ε is taken to be proportional to the num-
ber of percolation steps (air-filled pores).

To this point, the continuum model gives the
steady-state water concentration in each air-
filled pore, and the percolation model tracks
the formation of, monitors the respective in-
terface areas of, and allows independent per-
colation events on, each water cluster. The
final step in implementing the model involves
using the state of the continuum model to
determine the evaporation rate of each clus-
ter. A percolation event occurs on a particu-
lar cluster each time that cluster loses a pore
volume, Vpore , of fluid.

To summarize, the coupled percolation-
continuum drying algorithm begins with a water-
saturated porous medium of prescribed system size,

pore space statistics, and boundary conditions. Ini-
tially, there is a single cluster with the air-water
interface at the open boundaries (or boundary),
and the remaining boundaries utilize no-flow con-
ditions. All open faces are subject to ambient con-
ditions (zero water content, ambient temperature)
across the boundary. Given this initial state, the
following algorithm at each time step is performed
until the liquid water has been fully (or sufficiently)
evaporated from the system:

1. Individual water clusters are identified.

2. The largest nonwetting radius at the air-
water interface of each cluster is invaded. The
percolation events in each water cluster are
treated independently. Air invasion occurs as
long as gravitational force exceeds the mini-
mum capillary force on the interface.

3. The evaporation flux is calculated at the
boundary of each cluster.

4. The diffusion model is coupled with the per-
colation model by invading the cluster that
loses a pore volume due to evaporation.
Percolation events are temporally sequenced
among water clusters. Water vapor diffu-
sion in the air phase means that there are
no trapped clusters.

DRYING SIMULATION RESULTS

Simulated Tomographic Images

The parameters used in our simulations were
based on the following values. A mean grain size
〈Rg〉 was chosen in the range 0.05 to 0.6 mm. The
mean pore size 〈Rw〉 was chosen to be 0.4〈Rg〉,
which corresponds to a porosity of about 6.4%. The
mean throat size 〈Rnw〉 was chosen to be 0.2〈Rw〉.
Standard deviations of the two distributions were
0.15 of the mean. This section contains visualiza-
tions of the rock core during drying for three dif-
ferent sets of open surfaces (Figures 1-3): only the
top surface is open, all sides are open with the top
and bottom closed, only the bottom surface is open.
More extensive graphical results are presented in
Strand [2003]. In Figures 1-3 each panel represents
a vertical cross section of the initially 100% water-
saturated sample. Each horizontal row depicts the
water-air distribution at a given saturation calcu-
lated as a volume average over the entire sample. In
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the bitmap images, black represents a water-filled
cell and white represents an air-filled cell.

Top Open: In the case in which all the bound-
aries are closed except for the top, evaporation oc-
curs as a relatively flat drying front moving from
the top to the bottom of the core. As the front
moves downward, the water-saturated part of the
medium is broken into myriad clusters of water.
These water clusters begin to shrink and eventually
evaporate completely, leaving an air-saturated re-
gion above the traveling front. For clusters farther
away from the water-saturated region, the concen-
tration of water vapor in the air surrounding the
cluster is continually decreasing. This causes the
mass flux in each interface throat to increase, along
with the cluster evaporation rate (normalized by
surface area). Water clusters are therefore limited
in their distance beyond the water-saturated region
before complete evaporation, causing a band of air
phase to form at the top of the core and grow down-
ward during evaporation.

Sides Open: In the case in which the top and bot-
tom boundaries are closed but all lateral boundaries
are open, a region of high air saturation quickly
forms beneath the top boundary and, as before,
an initial horizontal drying front moves downward.
The early character of the main (zeroth order) wa-
ter cluster is more rounded in the center as opposed
to being relatively flat, reflecting the fact that air
must invade from the lateral boundaries to form
the upper air region. As the drying front moves
downward, small water clusters extend all the way
to the top boundary, even at very low water satura-
tion, because the closed top boundary prevents the
formation of strong vertical gradients in the water-
vapor concentration of the air phase.

Bottom Open: The case in which the bottom
boundary is open and all other boundaries are
closed corresponds to one of the cases considered
in the experiments and simulations of Prat [1993;
2002], and our observations are essentially the same
as reported therein. Namely, drying initiates with
a single finger of air forming at the bottom face
and migrating to the top of the core. The finger is
relatively narrow and does not intersect the plane
shown in Figure 3, but it can be seen in other views.
The finger acts as a conduit for air and allows the
formation of a region of high air saturation at the
top of the core. A horizontal drying front forms and
migrates downward, as observed in previous cases.
Relatively small clusters of water form behind the
front and remain uniformly distributed and essen-

tially constant in size until the bottom boundary
is reached because all evaporation takes place at
the bottom face. Water vapor concentrations in
the air phase remain close to the saturated value
because only the single finger connects the upper
air region to the dry air outside. Gradients remain
very small, and the clusters evaporate very slowly.
Once the initial drying front reaches the bottom
face, a secondary drying front forms at the bottom
face and migrates upward, eliminating the discon-
nected clusters, and strong vertical gradients in the
water vapor concentration are now present.

For all three cases, drying can be viewed as a two-
stage sequence. In the first stage, the initial, single
water cluster breaks into many as the drying front
moves downward. The drying front for the case
of an open top is relatively flatter. The secondary
drying front moves inward from all open sides, pro-
gressively eliminating residual water clusters. The
spatial location of residual water clusters depends
significantly on the boundary conditions. The air-
saturated region occupies the space between the
residual water clusters and the open surfaces. The
sizes and distribution of residual water clusters are
highly dependent on the applied boundary condi-
tions. When only the top face is open, residual
clusters are limited to a narrow band along the ini-
tial drying front, and the secondary drying front is
nearly eliminated. In contrast, when other faces are
open (top open or closed), residual water clusters
are larger in size and are more widely distributed,
and the secondary drying front can be clearly ob-
served moving inward from all open faces.

Effect of Varying Grain Size

This subsection examines the effects of varying
the grain size while holding the physical dimensions
of the system constant at 2 cm × 2 cm × 3 cm. The
ratios 〈Rw〉/〈Rg〉 and 〈Rnw〉/〈Rw〉 are kept con-
stant; thus, the porosity remains constant. Because
the nonwetting throat radius 〈Rnw〉 is proportional
to mean grain radius, the change in Bond num-
ber is proportional to the square of 〈Rg〉. As the
grain size is varied between 0.05 mm and 0.6 mm,
the Bond number changes between 9.54×10−5 and
1.37 × 10−2. The results of the MIP model can
be interpreted to be the same for the same Bond
number as long as the other parameters are scaled
appropriately. The coupled MIP-continuum dry-
ing model is expected to show qualitatively simi-
lar water-cluster configurations for the same Bond
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number because the sequencing of the air invasion
is governed principally by the percolation model.
Other aspects of the model, such as the drying rate
and vapor concentrations, would not be expected
to depend only on Bond number. Figure 4 shows
water clusters and vapor concentration profiles in
the x = 0 plane as water saturation decreases from
80% (top row) to 3.3% (bottom row) and grain size
decreases to the right. The size of the largest gener-
ated clusters remains close to constant as the grain
size decreases, although there is an extensive in-
crease in the production of smaller water clusters.

One measure of the size distribution of water clus-
ters is the fraction of the water-filled cells that re-
side at the air-water interface, fi, shown as a func-
tion of water saturation for different grain sizes
(Figure 5):

fi =
ninterface

nwet

, (8)

where ninterface is the number of water-filled cells at
the air-water interface and nwet is the total num-
ber of water-filled cells. Although the results are
given only for the case of the top surface being
open, simulations showed that the fraction of cells
at the water-air interface, for a given grain size and
saturation, is fairly independent of boundary condi-
tions, even though contours of saturation distribu-
tion within the rock sample can be quite different.
The drying process appears to produce similar clus-
ter sizes at different saturations. In other words,
the functional form of the fraction of water-filled
cells on the interface depends primarily on water
saturation, and fi is larger at a given water satura-
tion Sw for decreasing grain size, and hence, Bond
number (i.e. relatively greater capillarity). For the
smallest grain size, over 90% of water-filled cells
are at the air-water interface for water saturations
between 0% and 40%. For the largest grain size,
the percentage of water-filled cells at the interface
decreases rapidly over the same water saturation
range so that most of the water resides in the inte-
rior of the clusters. Thus, for a given water satura-
tion, water tends toward larger clusters and can be
characterized as “patchier” for larger grain sizes.

LAMÉ PARAMETER (λ) PLOTS

Before presenting the elastic moduli simulation
results, we must explain why they are presented in
terms of the ratio λ/µ, where λ is Lamé’s parame-
ter and µ is shear modulus [Berryman et al., 2002].
Because µ is generally independent of saturation,
most of the variation of the ratio is to be expected

to be in λ. Based on the standard relations between
elastic wave velocities and elastic moduli, the ratio
λ/µ is related to the square of the Vp/Vs ratio:

λ

µ
=

(

Vp

Vs

)2

− 2 . (9)

Berryman et al. [2002] examined how the phase
distribution of gas and liquid influences the ratio
λ/µ as a function of saturation and frequency. If
the gas and liquid are homogeneously mixed, then
the dry or drained value is expected for water sat-
urations between 0% and approximately 95%. The
ratio increases rapidly to the undrained value be-
tween 95% and 100%. Dry or drained response
is expected also at frequencies low enough to sat-
isfy the Gassmann assumption of drained behav-
ior when the liquid is patchily distributed, that
is, when gas and liquid are segregated with some
patches containing only gas while other patches
contain only liquid. If, on the other hand, the liq-
uid is patchily distributed and the measurement fre-
quency is higher such that no pore pressure equi-
libration occurs, then the Gassmann equation for
undrained response applies locally, and the macro-
scopic response is a volume (Voigt) average of the
individual liquid-filled and gas-filled regions. The
Voigt average associated with these assumptions for
patchy saturation is a linear function of saturation,
ranging from the drained value at zero water sat-
uration to the undrained value at full saturation.
Because the measured field or laboratory values of
λ/µ depend on the exact nature of the liquid phase
geometry and the frequency, they can only be ex-
pected to fit within a bounding triangle whose base
is the dry or drained value and whose hypotenuse
(λ/µ)Voigt connects drained and undrained values
(Figure 6). Laboratory data at higher frequencies
typically plot within the triangle indicating behav-
ior intermediate between homogeneous and patchy.

ELASTIC-WAVE VELOCITY SIMULATION
RESULTS

The distribution of water clusters obtained from
the drying simulations is used to estimate elastic
moduli. The computational model is based on a
critical assumption that pores containing water on
the two-phase interface as well as air-filled cells be-
have in a drained manner. This assumption breaks
the simple linear relationship between elastic mod-
uli as a function of saturation, and it introduces a
dependence on the size distribution of fluid-filled
patches. Only strictly interior, water-filled cells
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are assumed to behave in an undrained manner.
For this model, the fraction of cells behaving in a
drained manner is the sum of air-filled cells and
water-filled cells at the water-air interface. Recall
that fi is the fraction of water-filled cells at the in-
terface of a water cluster, and note that, for these
simulations, the number of water-filled cells can
be counted, as can the number of water-filled cells
at the air-water interface. The number of drained
(dry) behaving cells normalized by the total number
N of cells in the sample is

‘ndry’

N
=

ndry

N
+ fiSw , (10)

and the number of undrained (wet) behaving cells
as a function of the total sample volume is

‘nwet’

N
= 1 −

‘ndry’

N
=

nwet

N
− fiSw . (11)

Explicitly also

ndry

N
= 1 − Sw (12)

and
nwet

N
= Sw . (13)

The effective elastic moduli are then computed as
a function of Sw using a Voigt volume average of
the “dry” and “wet” behaving fractions:

λ

µ
=

(

λ

µ

)dry
‘ndry’

N
+

(

λ

µ

)wet
‘nwet’

N
. (14)

For the patchy saturation limit shown in Figure 6,
we have

(

λ

µ

)Voigt

=

(

λ

µ

)dry
ndry

N
+

(

λ

µ

)wet
nwet

N
, (15)

which allows us to write Equation 14 as a correction
to the patchy saturation limit:

λ

µ
=

(

λ

µ

)Voigt

+fiSw

[

(

λ

µ

)dry

−

(

λ

µ

)wet
]

. (16)

The results shown in Figure 6 are based on the val-
ues of fi shown in Figure 5. The numerical values
used for the moduli were λdry = 5GPa, λwet =
17GPa, and µdry = µwet = 12GPa. All model re-
sults for different values of the Bond number fit
within the bounding triangle defined by Berryman

et al. [2002]. The trend is toward behavior that
is more Gassmann-like for smaller grain sizes and

approaches pure patchy-saturation for larger grain
sizes. The key determinant of elastic behavior is
the size of water clusters. As shown in Figure 5, a
greater fraction of cells is at the interface for smaller
grain sizes. For example, 89.4% of water-filled cells
are at the interface at an overall water saturation
of 0.4 for a grain size of 0.05 mm, whereas only
25.1% of water-filled cells are at the interface for
the same overall water saturation but for a grain
size of 0.6 mm. The distribution of water clusters
thus includes a relatively larger number of smaller
water clusters at smaller grain size. As a result,
essentially drained behavior is maintained for wa-
ter saturations up to 0.4 for the smallest grain size.
Conversely, larger water clusters, which have cor-
respondingly fewer cells at the water-air interface,
show behavior tending toward that of patchy satu-
ration.

Although the model being presented is qualita-
tive in nature, its conceptual basis is supported
by the plots of λ/µ versus water saturation from
experimental results (Figures 7-9). For example,
both Massillon sandstone (23% porosity) and Spirit
River sandstone (7.1% porosity) display approx-
imately drained behavior between Sw = 0 and
Sw = 0.4 at measurement frequencies of 200 kHz
and 600 kHz, respectively, whereas Schuler-Cotton
Valley sandstone (5.1% porosity) approaches the
patchy saturation limit at 200 kHz [Knight and

Nolen-Hoeksema, 1990; Murphy, 1984]. These com-
parisons demonstrate that the variation of Lamé’s
parameter with saturation at high frequency is
compatible with percolation processes governing
the distribution of water-cluster sizes during dry-
ing.

COMPARISON TO JOHNSON’S
PATCHY-SATURATION THEORY

Johnson [2001] found the ratio of surface area of
the water-air interface, to sample volume, S/V , to
characterize the geometry of saturation patches as
one of only two parameters required in an analytical
model for the frequency dependence of the complex
bulk modulus in partially saturated rock. In partic-
ular, S/V is proportional to the first-order correc-
tion term at high frequency, which lowers the bulk
modulus from the Voigt average for pure patchy
saturation. The factor fiSw in the correction term
of Equation 16, which results from applying a Voigt
volume average of the elastic properties of water-
filled and air-filled cells, plus the ad hoc rule that
water-filled pores on the air-water interface of a
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cluster behave in a drained manner, is also pro-
portional to S/V :

fiSw =
〈Rg〉

φ

(

S

V

)

(17)

where φ is the porosity, because fiSw =
(1/φ)(ninterface/N), and ninterface = S/〈Rg〉

2

and N = V/〈Rg〉
3. Smaller Bond numbers (rela-

tively higher capillary forces vis a vis gravity) lead
to higher S/V , and hence, softer elastic behavior.

Johnson’s second parameter T ≡ lf
2/DT is the

(complex) coefficient associated with the first-order
expansion in frequency of the complex bulk mod-
ulus for very low frequencies. The parameter T is
the mean time for diffusion across an effective fluid-
patch size, lf , and DT is a diffusivity similar to that
of a deformable skeletal frame in an incompressible,
viscous fluid. Johnson defines the effective fluid-
patch size as

lf ≡
1

Vf

∫

Vf

Φ̃d3r, (18)

where the auxiliary function Φ̃ satisfies Poisson’s
equation:

∇2Φ̃ = −1 (19)

within fluid patches and is zero outside. Thus,
the quantity lf can be obtained from a numeri-
cal, finite-difference solution using the cell-by-cell
output of the drying model. In the future we an-
ticipate using our drying model results to compute
the entire frequency spectrum of the complex bulk
modulus.

CONCLUSIONS

Our percolation-continuum model provides a sim-
ulated tomographic image of water distribution
within a rock core during drying. The model gives
a pore-scale, pictorial view of the nature of “patchy
saturation.” The distribution of water-cluster sizes
is primarily a function of water saturation for differ-
ent boundary conditions. In particular, the fraction
of water-filled cells at the air-water interface, and
hence the interface surface-area-to-sample-volume
(S/V ) ratio, is insensitive to which boundary sur-
faces are open to air. At a given water-saturation
level, the (S/V ) ratio increases as the average grain
size decreases. Water at the phase interface is as-
sumed to behave locally in a drained fashion, even
at high frequency. This assumption yields elas-
tic behavior as a function of saturation that ap-
proximates high-frequency measurements in sev-
eral sandstones. In the model predictions, smaller

grain-size sandstones display Gassmann-like behav-
ior at low water saturations, whereas sandstones
consisting of larger grain size display nearly ideal
patchy behavior. With the success of these simu-
lations, Johnson’s [2001] model can be applied to
obtain the complete frequency dependence of the
complex bulk modulus in partially saturated rock
using our simulated water saturation distribution.
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Sw=76.7%

Sw=53.3%

Sw=30.0%

Sw=6.7%

Figure 1: Drying model results for top surface open and all other surfaces closed. Each row from top
to bottom represents water saturation values Sw of 76.7%, 53.3%, 30.0%, and 6.7%, respectively. First
three columns from left to right are in the plane x = 0 showing, respectively: (i) Linear saturation
averages, white ↔ air, black ↔ water, (ii) Phase distribution bitmap, white ↔ air, black ↔ water, (iii)
Water vapor concentration in air phase, black ↔ pure phase (air or water), grayscale indicates water
vapor content (white ↔ saturation vapor concentration). Remaining three columns (iv)-(vi) repeat the
same quantities in the plane y = 0.
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Sw=76.7%

Sw=53.3%

Sw=30.0%

Sw=6.7%

Figure 2: Drying model results for all side surfaces open and top and bottom surfaces closed. Legend
as for Figure 1.
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Sw=76.7%

Sw=53.3%

Sw=30.0%

Sw=6.7%

Figure 3: Drying model results for bottom surface open and all other surfaces closed. Legend as for
Figure 1.
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Sw=80%

Sw=3.3%

Sw=60%

Sw=40%

Sw=20%

0.5 mm 0.4 mm 0.3 mm 0.2 mm

< Rg >

Figure 4: Phase distributions and water vapor concentration for variation in grain size, constant physical
system size. Grain size decreases to the right. Each image is 2 cm × 3 cm, and water saturation decreases
from top to bottom.
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Figure 5: Variation of the fraction of water-filled cells at the air-water interface with respect to water
saturation, parameterized for different grain sizes assumed in drying model.

Figure 6: λ/µ versus water saturation for different average grain sizes. Base of bounding triangle is low-
frequency Gassmann prediction, and hypotenuse is high-frequency prediction of ideal patchy saturation
behavior [Berryman et al., 2002].
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Figure 7: Sandstone data [Knight and Nolen-Hoeksema, 1990] superposed on drying model curves. Spirit
River sandstone shows behavior intermediate between patchy and low-frequency, drained behavior.
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Figure 8: Sandstone data [Murphy, 1984] superposed on drying model curves. Massillon sandstone
shows behavior intermediate between patchy and low-frequency, drained behavior.
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Figure 9: Sandstone data [Murphy, 1984] superposed on drying model curves. Schuler-Cotton Valley
sandstone shows ideal patchy behavior.
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